Controlling balance in an ensemble Kalman filter

نویسنده

  • G. A. Gottwald
چکیده

We present a method to control unbalanced fast dynamics in an ensemble Kalman filter by introducing a weak constraint on the imbalance in a spatially sparse observational network. We show that the balance constraint produces significantly more balanced analyses than ensemble Kalman filters without balance constraints and than filters implementing incremental analysis updates (IAU). Furthermore, our filter with the weak constraint on imbalance produces good rms error statistics which outperform those of ensemble Kalman filters without balance constraints for the fast fields.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distance Dependent Localization Approach in Oil Reservoir History Matching: A Comparative Study

To perform any economic management of a petroleum reservoir in real time, a predictable and/or updateable model of reservoir along with uncertainty estimation ability is required. One relatively recent method is a sequential Monte Carlo implementation of the Kalman filter: the Ensemble Kalman Filter (EnKF). The EnKF not only estimate uncertain parameters but also provide a recursive estimat...

متن کامل

Controlling Overestimation of Error Covariance in Ensemble Kalman Filters with Sparse Observations: A Variance-Limiting Kalman Filter

The problem of an ensemble Kalman filter when only partial observations are available is considered. In particular, the situation is investigated where the observational space consists of variables that are directly observable with known observational error, and of variables of which only their climatic variance and mean are given. To limit the variance of the latter poorly resolved variables a...

متن کامل

Controlling model error of underdamped forecast models in sparse observational networks using a variance limiting Kalman filter

The problem of controlling covariance overestimation due to underdamped forecast models and sparsity of the observational network in an ensemble Kalman filter setting is considered. It is shown in a variational setting that limiting the analysis error covariance to stay below the climatological value and driving the mean towards the climatological mean for the unobserved variables can significa...

متن کامل

Enhanced Predictions of Tides and Surges through Data Assimilation (TECHNICAL NOTE)

The regional waters in Singapore Strait are characterized by complex hydrodynamic phenomena as a result of the combined effect of three large water bodies viz. the South China Sea, the Andaman Sea, and the Java Sea. This leads to anomalies in water levels and generates residual currents. Numerical hydrodynamic models are generally used for predicting water levels in the ocean and seas. But thei...

متن کامل

Combining geostatistics and Kalman filtering for data assimilation in an estuarine system

Data assimilation (DA) has been applied in an estuarine system in order to implement operational analysis in the management of a coastal zone. The dynamical evolution of the estuarine variables and corresponding observations are modelled with a nonlinear state-space model. Two DA methods are used for controlling the evolution of the model state by integrating information from observations. Thes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014